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Abstract

The porous microstructure of wood samples on their sections perpendicular to the fibres were analyzed using the scanning electron
microscope images. The fractal dimensions of these images were calculated using the box-counting method, respectively. They are all
approximately equal to 1.4, although the distribution and the scale of wood fibres are extremely different. Then, a fractal model for pre-
dicting the effective thermal conductivities of wood was established using the thermal resistance method. In addition, we measured the
effective thermal conductivity of wood via an improved transient plane source measurement method. The calculated results by the pro-
posed model are in good agreement with the experimental data as well as the literature data. The comparison shows clearly that this
fractal model can be used to accurately and effectively predict the effective thermal conductivities perpendicular to the fibres of wood.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Wood is a typical material used in architecture and dec-
oration, as well as a widely used solid fuel. Thermal prop-
erties of wood are needed in applications and the effective
thermal conductivity is the most important one for model-
ling the heat conduction, combustion and pyrogenation
process of wood. Recently, Thunman et al. [1] reported
their study of models for calculating the thermal conductiv-
ity of wood at different stages of combustion. Using these
models, they calculated the thermal conductivity perpen-
dicular to the fibres and the thermal conductivity along
the fibres of wood. Asako et al. [2] studied the thermal con-
ductivity of compressed woods by a three-dimensional hot-
wire method. As previously shown in these references, the
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analysis of the microstructure of wood fibres is an effective
way to study the heat conduction of wood.

Fractal is a word firstly coined by Mandelbrot [3], then
it has been widely used in so many fields, especially in the
non-linear and micro-scale science. The fractal theory can
well describe the disorder and stochastic performance of
porous media. Pitchumani et al. [4] have firstly used fractal
theory in the research of the effective thermal conductivity
for unidirectional fibrous composites. Then, it also has
been successfully used in the study of the prediction of
effective thermal conductivities of bidispersed porous
media [5] and liquid with nanoparticles [6], but few reports
used this theory to study the effective thermal conductivity
of wood.

When it comes to measure the thermal properties of
solid materials, the transient plane source (TPS) method
is widely used [7–10]. This transient measurement tech-
nique also appropriately satisfies the requirements for the
measurement of the thermal properties of wood. Therefore,
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Nomenclature

a scale of fractal units
A area of a cell
b thickness of a cell wall
d fractal dimension
h height of cavity of a cell
k thermal conductivity
l width of a cell
q heat flux
R thermal resistance
t time
T temperature

Greek symbols

a thermal diffusivity
d thickness of wood sample
/ porosity

Subscripts

w wall
c cavity
t tangential
r radial
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we use the TPS method in this paper, but it has been rede-
signed by us.

The major purpose of this paper is to establish a fractal
model for calculating the effective thermal conductivity of
wood perpendicular to fibres. First, the characters of scan-
ning electron microscope (SEM) images of several wood
samples are analyzed using the fractal theory. Then the
fractal model is established via the thermal resistance
method. Secondly, an improved TPS method is introduced
and then performed to measure the effective thermal con-
ductivity perpendicular to fibres of two kinds of wood sam-
ples. Finally, the results calculated by the fractal model are
compared with the experimental data and the available lit-
erature data.
2. Microstructure of wood

2.1. Experimental observation

We select four kinds of widely seen and used woods the
observed samples, including basswood, birch, larch and
Korean pine. Although the structures of wood fibres differ
in size, the shape and the distribution of them have certain
similarities. In view of this fact the scanning electron micro-
scope PHILIPS-XL30ESEM is used to clearly observe the
microstructure of these samples. They are made by the cen-
tral parts perpendicular to the fibres of wood, which were
taken from the north-east and south-east forests of China.

The SEM images with different amplificatory multiples
are displayed in Fig. 1. In the pictures (a) and (b), it is seen
obviously that the boundary of fibres both in basswood
and birch is very complex and the fibres distribute ran-
domly. However, the pictures (c) and (d) of larch and Kor-
ean pine are extremely different from the pictures of
basswood and birch. The pores of larch are very like a
course of bricks, which are built fitly, and the array of
the pores of Korean pine is very like a honeycomb. This
means that the fibre distribution of softwood is more regu-
lar than that of hardwood, and there are certain self-simi-
larities of wood fibre, either softwood or hardwood. The
traditional Eculidean geometry cannot be used to describe
the distribution character of these microstructures in detail
because of the regular dimension cannot represent the com-
plexity of the images. According to the characters of fractal
[3], these microstructures of wood are randomly quasi-
regular, and there is a self-similarity at certain scale.
Therefore, they can be considered as fractal structures
and the fractal theory can be used to study them.

2.2. Fractal dimension

Before using the fractal theory, it is necessary to intro-
duce some definitions of fractal indexes. The fractal dimen-
sion d is the most important parameter for describing the
fractals. A two-dimensional object, such as the SEM fig-
ures of wood we obtained previously, can be divided into
N(a) self-similar smaller squares each of which is scaled
down by the length a of the side. Therefore, the fractal
dimension d can be defined as

d ¼ log NðaÞ= logð1=aÞ: ð1Þ

The fractal dimension, unlike the normal Euclidean
dimension, need not be an integer and is often not an inte-
ger. Using this definition, which is so-called the box-count-
ing method, we can calculate the dimensions of these SEM
images. The fractal dimensions of these four kinds of wood
are calculated as shown in Fig. 2, respectively. The slopes
of these four lines are the fractal dimensions, and they
are listed in Table 1.

It should be noted that the fractal dimension of wood
fibres cannot be accurately computed. One reason is that
the uncertainty of the figure division through a certain fig-
ure threshold, another reason involves that the anisotropy
of wood. Additionally, due to the diversity between differ-
ent kinds of wood, there will be different fractal dimensions
of wood in different directions for the same samples and for
the different samples made from the same tree. However,
from the results displayed in Table 1, it is to be aware that
the fractal dimensions of wood fibres in the cross-sections
are roughly equal to 1.4, and we can use the calculated
fractal dimension from a certain sample to represent the
fractal dimension of this kind of wood.



Fig. 1. SEM images of wood samples on their cross-sections: (a) basswood, (b) birch, (c) larch and (d) Korean pine.
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Fig. 2. Box-counting fractal dimensions of wood samples: (a) basswood, (b) birch, (c) larch and (d) Korean pine.
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Table 1
Box-counting dimensions of the SEM images of wood samples

Wood sample Fractal dimension d

Basswood 1.38
Birch 1.49
Larch 1.38
Korean pine 1.44
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Fig. 4. Paths of heat flux through a cell represented by electrical circuits.
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3. Fractal model

As used in the references [1,2,5,11], thermal resistance
simulation is a very useful method to simplify the heat con-
duction process in porous media and to predict the effective
thermal conductivity. We also try to use this method in this
paper to establish the relation between the average porosity
and the effective thermal conductivities of wood. First, of
all, several assumptions are made as follow:

(1) The wood is dry, so there is no moisture in the cavity
of cells.

(2) The cell geometry is rectangular, and all cells have the
same shape and dimensions.

(3) The convective and radiative effects in the cavity of
cells were neglected, and the heat transfer process of
a cell is simplified to a pure heat conduction process.

(4) The thickness of the cell wall is constant and is equal
to b, the width of the cell is l, and the height of the cell
cavity is h (as displayed in Fig. 3).

(5) The direction x is set as the tangential direction, and
the direction y as the radial direction.

(6) kw means the thermal conductivity of the cell wall of
wood, and kc means the thermal conductivity of the
cavity of cells.

Then, the thermal conductivity of a wood cell can be
used to represent the effective thermal conductivity of
wood. The model of two-dimensional heat conduction in
a wood cell and its separation are considered as shown in
Fig. 3. Accordingly, the formulas of the effective thermal
conductivities of wood can be obtained.

3.1. Tangential thermal conductivity

When the direction of the heat flux is parallel to the x

direction, the thermal resistance network of the tangential
Fig. 3. Schematic diagram o
heat conduction can be described as represented in
Fig. 4. If, moreover, we assume that the thickness of the
cell at the direction perpendicular to this paper is the unit
length 1, the thermal resistance of every part of the cell
can be given as

Rt1 ¼
l

bkw

; Rt2 ¼
b

hkw

; Rt3 ¼
l� 2b

hkc

; ð2Þ

and the whole thermal resistance of the cell is

Rt ¼
l

ðhþ 2bÞkt

; ð3Þ

where kt is the tangential effective thermal conductivity of
wood. According to the paths of the thermal resistance net-
work, the whole thermal resistance also can be written as

Rt ¼
2

Rt1

þ 1

2Rt2 þ Rt3

� ��1

: ð4Þ

Substituting Eqs. (2) and (3) into Eq. (4), then it can be
simplified to

kt ¼
ð4bþ hlÞkwkc þ 2bðl� 2bÞk2

w

2bðhþ 2bÞkc þ ðhþ 2bÞðl� 2bÞkw

: ð5Þ
3.2. Radial thermal conductivity

When the direction of the heat flux is parallel to the y

direction, the thermal resistance network of the radial heat
conduction can be described as shown in Fig. 4. Therefore,
the thermal resistance of every part of the cell can be given as

Rr1 ¼
b

lkw

; Rr2 ¼
h

bkw

; Rr3 ¼
h

ðl� 2bÞkc

; ð6Þ
f a cell and its division.



Table 2
Density and calculated porosity of wood samples

Wood sample Density (kg m�3) Porosity

Larch 671 0.552
Korean pine 431 0.712
Birch I [9] 680 0.547
Birch II [9] 567 0.622
Birch III [9] 543 0.636
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and the whole thermal resistance of the cell is

Rr ¼
hþ 2b

lkr

; ð7Þ

where kr is the radial effective thermal conductivity of
wood.

Like the above discussion of tangential effective thermal
conductivity, according to the connection of the thermal
resistances network as displayed in Fig. 4, the whole ther-
mal resistance also can be given as

Rr ¼ 2Rr1 þ
2

Rr2

þ 1

Rr3

� ��1

: ð8Þ

Fitting Eqs. (6) and (7) into Eq. (8), then it can be rewritten
as

kr ¼
2ðhþ 2bÞðl� 2bÞkwkc þ bðhþ 2bÞk2

w

4bðl� 2bÞkc þ ð2b2 þ hlÞkw

: ð9Þ
3.3. Proposed model

On the one hand, in accordance with the previous six
assumptions, the porosity / of wood can be given as

/ ¼ Ac=A; ð10Þ
where Ac is the cavity area of the cell, and A is the area of
the cell. The expressions of Ac and A can be defined as

Ac ¼ hl� 2bh; ð11Þ
A ¼ hlþ 2bl: ð12Þ

Substituting the Eqs. (10)–(12) into Eqs. (5) and (9), the
correlation between the thermal conductivities and the
porosity / can be obtained

kt ¼
0:5ð1þ /Þ2kwkc þ /ð1� /Þk2

w

/ð1� /Þkc þ 2/kw

; ð13Þ

kr ¼
4/kwkc þ 0:5ð1� /Þk2

w

2/ð1� /Þkc þ 0:5ð1þ /Þ2kw

: ð14Þ

According to another definition of fractal dimension
[12], the relationship between the porosity and the fractal
dimension also can be presented as

/ ¼ CAd�1; ð15Þ

where C is a constant.
On the other hand, wood is a porous material and the

porosity is dependent on the kind of wood as well as the
moisture content. This porosity / was estimated by Sulei-
man et al. [9] using

/ ¼ 1� ðqave=qthÞ; ð16Þ
where qave is the average apparent density of the sample,
qth is the assumed theoretical density of a compact solid
free from voids. The value of qth is assumed to be 1500
kg/m3 [9]. Table 2 gives the density and calculated porosity
of wood samples, including both larch, Korean pine we
measured and birch reported in reference [9]. The porosity
is defined by Eq. (16) using the corresponding listed densi-
ties. Moreover, as shown in Fig. 1, it is apparently seen that
the scale of different kinds of wood fibres is in the range
from 2 to 5 lm. In order to build an all-purposed model
for each kind of wood, we use the average scale that we
have investigated previously. Then, it is assumed that A

is 4 · 4 lm, and Ac is 3 · 3 lm. This also means that the
porosity is about 0.56, which well accords with the average
value of the listed porosities in Table 2.

Substituting this value into Eq. (15) and combining with
the average fractal dimension which is approximately equal
to 1.42, we can obtain that the value of constant C is about
1.73, then, Eq. (15) can be rewritten as

/ ¼ 1:73� 16d�1: ð17Þ
Finally, after Eq. (17) has been substituted into Eqs. (13)

and (14), the formulas that describe the relationship
between the fractal dimension and effective thermal con-
ductivities of wood are obtained

kt ¼
0:5ð1þ 1:73� 16d�1Þ2kwkcþ 1:73� 16d�1ð1� 1:73� 16d�1Þk2

w

1:73� 16d�1ð1� 1:73� 16d�1Þkcþ 3:46� 16d�1kw

;

ð18Þ

kr ¼
6:92� 16d�1kwkcþ 0:5ð1� 1:73� 16d�1Þk2

w

3:46� 16d�1ð1� 1:73� 16d�1Þkcþ 0:5ð1þ 1:73� 16d�1Þ2kw

:

ð19Þ
4. Transient measurement

4.1. Measurement model

A new short time formula will be proposed in this paper
to satisfy measurement requirements of the thermal prop-
erties of wet wood. The physical model of the wood sample
we measured is displayed in Fig. 5. If the length and width
of the measured samples are extremely longer than the
thickness, the sample can be considered as a one-dimen-
sional quasi-infinite slab. There is only a temperature gra-
dient at the x direction through the sample, so the heat
conduction process can be simplified to a one-dimensional
process. When there is an even plane source with constant
heat flux q under the sample to heat it, and the other sur-
faces of the sample are adiabatic, the differential equations
that describe the one-dimensional heat conduction of the
model can be given as

a
o

2T
ox
¼ oT

ot
; ð20Þ
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Fig. 5. Physical model for transient measurement.
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subject to the boundary conditions

� k
oT
ox
¼ q; at x ¼ 0; ð21Þ

oT
ox
¼ 0; at x ¼ d; ð22Þ

and the initial condition

T ¼ T 0; for t ¼ 0; ð23Þ
where a is the thermal diffusivity of the wood sample.

Taking the Laplace transformation to the equations
from (20)–(23), the temperature variation in the sample
parallel to x direction at every time t > 0 can be obtained

T ¼ T 0 þ
2q
k

ffiffiffiffi
at
p

r X1
n¼0

exp �K2
n1

4t

� �
þ exp �K2

n2

4t

� �� �

� q
k

ffiffiffi
a
p X1

n¼0

Kn1erf
Kn1

2
ffiffi
t
p

� �
þ Kn2erf

Kn2

2
ffiffi
t
p

� �� �
; ð24Þ

where n is zero or a positive integer, and

Kn1 ¼
2ndþ xffiffiffi

a
p ; Kn2 ¼

2ðnþ 1Þd� xffiffiffi
a
p ; ð25Þ

If a certain accuracy requirement is taken into consider-
ation, the shorter the measurement time is, the fewer the
items of Eq. (24) are required. In fact, we consider only a
very short time after heating in the transient measurement
process, so the items that n P 1 can be deleted then Eq.
(24) can be rewritten as

T ¼ T 0 þ
2q
k

ffiffiffiffi
at
p

r
exp � x2

4at

� �
þ exp �ð2d� xÞ2

4at

" #( )

� q
k

xerf
x

2
ffiffiffiffi
at
p

� �
þ ð2d� xÞerf

2d� x

2
ffiffiffiffi
at
p

� �� �
; ð26Þ

We called Eq. (26) the short time formula for the tran-
sient measurement.

4.2. Experimental equipments

In the experiment, the larch and Korean pine are
selected measurement samples. To satisfy the experimental
requirements, the samples were produced from the original
wood without cracks, notches and impurities. In addition,
every kind of sample is produced four same specimens,
whose sizes are all 100 mm · 100 mm · 15 mm, to accord
with the assumptions of one-dimensional heat conduction.
Their surfaces are processed extremely flat and smooth to
the same testing conductions.

As shown in Fig. 6, the experimental equipment system
consists of three main parts, namely: shelves for fixing the
samples, digital devices for automatically collecting the
experimental data, and circuits for heating. Concretely,
data collection device mainly consists of several copper-
cupronickel thermal couples, a HP 34970 A data collection
chip, and a PC with some interfaces, and the heating circuit
mainly consists of a foursquare plane heater, 220 V power
source, a precise electric resistance, and so on.

The heat flux generated by the higher plane heater is
equal to that by the lower one, and these two heaters are
the same as each other, so the plane between the sample
2 and sample 3 can be considered as an adiabatic interface.
Therefore, the condition of sample 2 and sample 3 well
accords with the previous measurement model and the pro-
posed short time formula can be used here. One of the ther-
mal couples was fixed at the plane between sample 1 and
sample 2, and another one was fixed at the plane between
sample 2 and sample 3 as shown in Fig. 6. The other ends
of these thermal couples were connected to the data collec-
tion chip. Moreover, the chip was linked to a PC to auto-
matically collect and record the data using a professional
software. Additionally, we used the heater made by
nickel–chrome material to reduce its specific heat capacity.

4.3. Measurement

Assuming that the thickness of the sample is the charac-
teristic dimension, the Fourier number can be defined as

Fo ¼ at=d2; ð27Þ
Substituting Eq. (27) into Eq. (26), then it can be rewritten
as

T ¼ T 0 þ
2qd

k

ffiffiffiffiffi
Fo
p

r
exp � x2

4d2Fo

� �
þ exp �ð2d� xÞ2

4d2Fo

" #( )

� q
k

xerf
x

2d
ffiffiffiffiffi
Fo
p

� �
þ ð2d� xÞerf

2d� x

2d
ffiffiffiffiffi
Fo
p

� �� �
: ð28Þ

In the experiment, we can conveniently measure the tem-
perature at the top and bottom surfaces of the sample,
which are T1 and T2, respectively. When the temperature



Table 3
Comparison of the thermal conductivities of wood in radial direction
(W/mK)

Wood sample Fractal
model

Experimental
data

Data reported
in [13]

Larch 0.151 0.131 0.134
Korean pine 0.110 0.109 0.107
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T1 has been measured, we can substitute x = 0 into Eq. (28)
and then obtain

T 1 ¼ T 0 þ
2qd

k

ffiffiffiffiffi
Fo
p

r
1þ exp � 1

Fo

� �� �
� erf

1ffiffiffiffiffi
Fo
p
� �( )

:

ð29Þ
Moreover, when the temperature T2 has been measured,

we can substitute x = d into Eq. (28) and then achieve

T 2 ¼ T 0 þ
2qd

k
2

ffiffiffiffiffi
Fo
p

r
exp � 1

4Fo

� �
� erf

1

2
ffiffiffiffiffi
Fo
p

� �" #
: ð30Þ

The parameters, including T1, T2, and the voltage of the
heater, were measured by the data collection chip. First,
the signals of voltage deviation were collected by the chip,
and then it was input to the PC. Secondly, a set of data of
T1 and T2 were obtained via the software which can trans-
form the voltage difference signals to the temperature sig-
nals. Finally, we can simultaneously calculate the thermal
conductivity k and the thermal diffusivity a based on Eqs.
(29) and (30) using the measured T1 and T2. We also can
predict the specific heat cp if the density q of the sample
is known. In this paper, however, the objective is to inves-
tigate the thermal conductivity of wood, so the thermal dif-
fusivity and specific heat of wood will not be discussed.

5. Analysis and comparison

According to the available literature data, the thermal
conductivity kw of the wood cell wall is 0.654 W/mK [2].
In addition, the wood samples we considered in the pro-
posed fractal model are dry so that there is only air in the
cavity of cells, whose thermal conductivity kc is 0.0256 W/
mK [2]. Then the thermal conductivities perpendicular to
the fibres of these four kinds of wood, which are calculated
using the proposed fractal model, were plotted in Fig. 7.

As displayed in Fig. 7, the tangential effective thermal
conductivity is almost the same as the radial effective ther-
mal conductivity. It is also obviously seen that the thermal
conductivities almost linearly decrease with the increment
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Fig. 7. Variation of thermal conductivities with fractal dimensions.
of the fractal dimensions. However, according to Eqs.
(18) and (19), the thermal conductivities are not linear
functions of the fractal dimension, so we could not directly
explain this tendency using the fractal model, and it needs
further investigation. Moreover, the tangential effective
thermal conductivity is often a little bigger than the radial
one. The accuracy is within 7–10% for both the tangential
and the radial direction of the effective thermal conductiv-
ity under every factor taken into consideration. Due to the
establishing process of the fractal model, there is no differ-
ence from these two directions. Therefore, the difference of
the effective thermal conductivities of wood in these two
directions owes to the macrostructure of wood, and it is
cannot be represented by this fractal model.

The calculated results of larch and Korean pine are in
good agreement with the experimental data as well as the
available literature data as displayed in Table 3. The esti-
mated uncertainty for measured value of thermal conduc-
tivity is within 3.2%. The comparison clearly shows that
the prediction of effective thermal conductivities perpendi-
cular to the fibres of wood via the proposed fractal model is
credible, either in the tangential or in the radial direction.
However, due to the complexity of the distribution of wood
fibres, the effective thermal conductivities of different kinds
of wood or perhaps different samples of the same tree are
extremely different. Therefore, the calculated and experi-
mental results can only be considered as the approximation
of the effective thermal conductivities of wood. Moreover,
the results of this fractal model only represent the effective
thermal conductivities of the dry wood. Usually, for the
reason that wood often contains some water, the model
should be revised before using. Assuming that the moisture
only exists in the cavity of cells, the thermal conductivity kc

of cell cavity is therefore greater than that of the air but
lower than that of the water. The higher the moisture con-
tent, the greater the thermal conductivity kc will be.
Through the revision of the thermal conductivity kc, the
fractal model also can be used to predict the thermal con-
ductivity of wet wood with different moisture contents.

6. Conclusions

In previous references, the relation between wood ther-
mal properties and the porosity has studied, but the inves-
tigations of the porosity as well as thermal properties of
wood using fractal theory are absent. In this paper, the
relation between the fractal dimension and the porosity
of wood has been established, then a fractal model is
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proposed for predicting the effective thermal conductivities
perpendicular to the fibres of wood. We also redesign the
TPS method for measurement of the thermal conductivities
of wood to validate the fractal model. Major conclusions
are drawn as follow:

(1) The fractal dimensions of different kinds of wood in
their cross-section can be determined from the SEM
images using the box-counting method.

(2) The proposed fractal model can be used to conve-
niently predict both the tangential and the radial
effective thermal conductivities of wood.

(3) The improved TPS method can effectively measure
the thermal properties of wood samples at a short
time, and the results are extremely credible and
precise.

In sum, we attempt to use the fractal theory to predict
the effective thermal conductivity of wood in this paper.
We succeed in proposing a fractal model for calculating
the effective thermal conductivities perpendicular to the
fibres of wood, but it is only a simple and rough model
because it is based on the single cell simplification. There-
fore, further work would be needed, especially for extend-
ing the fractal model to the three-dimensional condition.
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